Effects of some Neutral Ligands on the Co-ordination of the Thiocyanate Ion in some Anionic Platinum(II) Complexes

By Stephen J. Anderson and Robin J. Goodfellow,* Department of Inorganic Chemistry, The University, Bristol BS8 1TS

The isomers present in solutions of $[Pt(CNS)_3L]^ [L = NMe_3, PMe_{(3-n)}Et_n$ (n = 0—3), AsMe₃, AsMe₂Et, SbMe₃, SMe₂, SeMe₂, or TeMe₂] have been identified by means of ¹H-{¹⁹⁵Pt} and ³¹P n.m.r. spectroscopy. *N*-Bonding of the thiocyanate ion is favoured when L contains a light donor atom, when the *trans* ligand has a high *trans* influence, or when a *cis* ligand is bulky.

RECENTLY ¹ we reported the results of our investigations into the co-ordination isomers of $[Pt(CNS)_2L_2]$.[†] Using ¹H-{¹⁹⁵Pt} INDOR we were able to identify the isomers present ² and hence the position of the equilibria between N- and S-bonded forms. From the set of *trans* complexes studied, clear evidence was found for the promotion of N-bonding by steric interaction with the *cis* ligands. Because only phosphines and trimethylstibine gave *cis* isomers, no definite conclusions could be reached on the role of a neutral ligand in the *trans* position. The relative effects of a neutral ligand on the co-ordination behaviour of *cis*- and *trans*-thiocyanate groups may be assessed simultaneously in the anionic complexes, [†] CNS is used where the mode of co-ordination of the thiocyanate group is unspecified. [Pt(CNS)₃L]⁻, which we have now investigated using ¹H-{¹⁹⁵Pt} INDOR and ³¹P Fourier-transform spectroscopy.

RESULTS

There are six possible isomers of $[Pt(CNS)_3L]^-$. In the proton spectrum of $[NBun_4][Pt(CNS)_3(PMe_3)]$ four doublets could be readily identified. The form of the related ¹H-{¹⁹⁵Pt} INDOR resonances (*cf.* ref. 2) showed them to be $[Pt(SCN)_3(PMe_3)]^-$, the two isomers of $[Pt(NCS)(SCN)_2-(PMe_3)]^-$ and one isomer of $[Pt(NCS)_2(SCN)(PMe_3)]^-$. The

¹ S. J. Anderson, P. L. Goggin, and R. J. Goodfellow, J.C.S. Dalton, 1976, 1959.

² S. J. Anderson and R. J. Goodfellow, J.C.S. Chem. Comm., 1975, 443.

values of ${}^{1}J(\text{PtN})$ and ${}^{1}J(\text{PtP})$ (Tables 1 and 2) clearly distinguished the two mono-*N*-bonded forms (*cf.* ref. 1). The lack of resolution of the 195 Pt resonances of the doubly *N*-bonded form might be expected if there were two values of ${}^{1}J(\text{PtN})$ and the magnitude of ${}^{1}J(\text{PtP})$ suggested nitrogen *trans* to the phosphine, *i.e. cis*-[Pt(NCS)₂(SCN)(PMe₃)]⁻. The Fourier-transform 31 P spectrum (Figure) has the features of all the six isomers. Using the changes in 1 H chemical shifts resulting from the replacement of *S*- by chain. The spectra were assigned by comparison with that of the trimethylphosphine complex.

For the complexes of AsMe₃, AsMe₂Et, SMe₂, SeMe₂, and TeMe₂, the number of N-bonded thiocyanate groups could usually be found from the multiplicity of the ¹⁴N coupling pattern in the ¹H-{¹⁹⁵Pt} INDOR spectrum. The isomers of [Pt(NCS)₂(SCN)L]⁻ can be distinguished by the values of ¹J(PtN) when L is an arsine, but the *trans* influences of the chalcogen ligands are too close to that of SCN to make

N.m.r. parameters of some anionic complexes, $[Pt(CNS)_3L]^-$							
т		Teomor #	- (Mo)	$\frac{^{3}J(\text{PtH})}{\text{Hz}}$	8(D+) b	$\frac{1J(\text{PtN})}{Hz}$	Relative
L	ſ	NSN	7 25	33.9	1 928(a)	460 ± 5	10
NMe ₃	{	NNN	7.32	ca. 31	2445(bd)	100 1 0	0.2
	ſ	SSS	8.25	32.3	179(s)		
		NSS	8.34	32.4	538(t)	355 ± 5	
PMe.	Į	NSN	8.40	ca. 33	955(q)	439 ± 5	С
3		SNS	8.40	32.2	439(t)	205 ± 5	
	1	NIND	8.43	02.8 17 94	103(DU)		
	C		8.40	<i>ca</i> . 34	1 014(00)		
	ſ	SSS	8.30	ca. 32	164(s)		
DMo Et	J	NSS	8.39	ca. 33	518(t)	340 ± 10	С
FMe2Et	ì	SNS	8.47	ca. 33	41 5(t)	215 ± 5	
	l	NNS	8.50	ca. 33	675(bd)		
	(SSS	8 33	21.4	228(s)		1.0
		NSS	8.41	22.3	642(t)	353 ± 5	0.4
AsMe ₃		SNS	8.46	22.6	576(t)	290 ± 10	0.2
	l	NNS	8.48	ca. 22^{-10}	897(bd)		0.04
	r	SSS	8.40	21.6	215(s)		1.0
		NSS	8.46	21.6	627(t)	360 + 5	0.3
AsMe ₂ Et	1	SNS	8.54	22.1	551(t)	270 + 5	0.2
	l	NNS	8.55		à		0.03
	(SSS	8.57	d	159(v.bd)		1.0
SbMe ₃	ĺ	NSS	8.62	d	598(v.bd)		0.05
	ſ	SSS	7.38	45.6	466(s)		1.0
		NSS	7.43	45.3	931(t)	370 + 5	0.4
SMe.	- Z	NSN	7.50	45.2	1498(q)	450 + 30	0.08
		SNS	7.53	47.1	944(t)	360 + 10	0.1
	l	NNS	7.55	ca. 46	1 302(bd)	_	0.02
	r	SSS	7.52	38.4	359(s)		1.0
S-M-	J	NSS	7.55	38.9	857(t)	375 ± 5	0.4
Seme ₂	1	NSN	7.59	39.0	1 446(q)	$\textbf{438} \pm \textbf{5}$	0.1
	l	SNS	7.67	ca. 39	851(t)	368 ± 10	0.06
	ſ	SSS	7.75	33.6	92(s)		1.0
ToMo 6	J	NSS	7.76	35.7	605(t)	367 ± 5	0.3
reme ²	1	NSN	7.80	ca. 35	1 190(bd)	_	0.04
	l	SNS	7.86		à		0.006

TABLE 1

^a The co-ordinated atoms of the thiocyanate groups are given in order around the metal starting with the group next to L, *e.g.* SNS indicates NCS *trans* to L. ^b In p.p.m. to high frequency of 21.4 MHz (when SiMe₄ resonates at 100 MHz). Multiplicity due to Pt-N coupling: s = singlet, t = 1:1:1 triplet, q = 1:2:3:2:1 quintet, bd = broad unresolved resonance. ^c See Table 2. ^d Not observed. ^e At 240 K.

N-bonded thiocyanate as a guide, the ¹H resonances of the last two isomers were then identified. The nature of all the features was confirmed by ¹H-{³¹P} and ¹H-{¹⁹⁵Pt} INDOR experiments. The ³¹P resonances of a phosphine are broad when *trans* to *N*-bonded thiocyanate due to partially relaxed coupling to ¹⁴N (*cf.* ref. 3). The resonances of a phosphine *trans* to *S*-bonded thiocyanate broaden a little with increasing number of *cis*-NCS groups. We have studied the ³¹P Fourier-transform spectra of the series [NBuⁿ₄][Pt(CNS)₃L] (L = PMe₂Et, PMeEt₂, or PEt₃) to provide an assessment of the steric effects of the alkyl such a distinction reliable. The resonances of *trans*-[Pt(NCS)₂(SCN)L]⁻ can be identified by the large value of ¹J(PtN) (ca. 450 Hz) for ¹⁴N *trans* to NCS.¹ The remaining isomers are assigned so that there is a regular upfield shift of the proton resonances when S- is replaced by N-bonded thiocyanate in the position *cis* to the neutral ligand and a rather larger upfield shift for the *trans* position.

As found for $[Pt(CNS)_2L_2]$,¹ there is a large decrease in $\delta(Pt)$ when NCS is replaced by SCN. For the anions ³ A. J. Carty and S. E. Jacobson, *J.C.S. Chem. Comm.*, 1975, 175.

studied here, the ¹⁹⁵Pt resonances of $[Pt(SCN)_3L]^-$ lie well below those of $[PtBr_3L]^-$,⁴ whilst those of the mono-*N*bonded species lie close to it. The two ¹⁹⁵Pt signals of $[Pt(CNS)_3(SbMe_3)]^-$ were very broad because of the relaxation caused by the quadrupolar antimony nucleus (*cf.*

 $\begin{array}{c} N \stackrel{+}{\rightarrow} N \stackrel{-}{\rightarrow} N \\ + N \stackrel{-}{\rightarrow} N \\ N \stackrel{-}{\rightarrow} S \\ - N \\ - N$

+s N +s +s

Phosphorus-31 spectrum (¹H decoupled) of [NBu^a₄][Pt(CNS)₃(PMe₃)]

TABLE 2

Phosphorus-31 n.m.r. parameters of $[Pt(CNS)_{3}L]^{-}[L = PMe_{3-n}Et_n (n = 0-3)]$

			1 I(P+P)	D-1-4
т	Isomor #	\$(D) b	$\frac{J(IU)}{U_{\pi}}$	proportion
L	isomer «	0(F)		proportion
	(555	19.1	3 229	1.0
	NSS	17.8	3 143	0.9
PMe.	NSN	17.7	3 075	0.9
	SNS	33.7	3 401	1.5
	NNS	30.6	3 369	0.7
	(NNN	28.9	$3\ 348$	0.5
			0.010	1.0
	555	8.3	3 219	1.0
	NSS	6.9	3 141	1.2
PMe_Et	NSN	6.8	3 081	1.3
	SNS	22.1	3 391	1.7
	NNS	19.2	3 373	0.9
	(NNN	17.4	$3 \ 353$	0.7
	6 666	9.0	0.015	1.0
	555		3 215	1.0
	NSS	4.2	3 139	1.5
PMeEt.	NSN	-4.4	3 082	2.0
2 1.102.02	SNS	10.4	3 395	1.9
	NNS	7.4	$3\ 380$	1.2
	(NNN	5.8	3 360	1.1
	(SSS	-11.8	3 213	1.0
	NSS	-13.4	3 141	1.9
PF+	J NSN	13.9	$3\ 092$	2.7
1 1.19) SNS	1.1	$3 \ 402$	2.4
	NNS	-2.0	3 389	1.7
	(NNN	3.7	$3\ 375$	1.9

^{*a*} As in Table 1. ^{*b*} In p.p.m. to high field of H_3PO_4 .

ref. 4) which precluded the observation of Pt-N coupling. One species has a shift *ca.* 450 p.p.m. below that of $[PtBr_3(SbMe_3)]^-$ (ref. 4) and is therefore assigned to $[Pt(SCN)_3(SbMe_3)]^-$ whilst the other is close to that of the bromo-anion and the proton shift suggests *cis*- $[Pt(NCS)-(SCN)_2(SbMe_3)]^-$. Two species were observed for $[Pt-(CNS)_3(NMe_3)]^-$, the most abundant of which gave a well resolved quintet in the ¹H-{¹⁹⁵Pt} INDOR spectrum. The magnitude of ¹J(PtN) is much greater than for the nitrogen of NMe₃ (ref. 1) and must therefore belong to a *trans*-SCN-Pt-NCS group. The relative proton and ¹⁹⁵Pt 1685

chemical shifts of the other isomer are in accord with $[Pt(NCS)_3(NMe_3)]^-$.

DISCUSSION

In our study of the neutral complexes, $[Pt(CNS)_2L_2]$, we identified a significant enhancement of the amount of N-bonded isomers when the bulk of a *cis* neutral ligand increased.¹ The consequences of the size of the neutral ligand in the present anionic complexes may be assessed from our measurements on $[Pt(CNS)_3L]^ [L = PMe_{(3-n)}Et_n (n = 0-3)]$. The thiocyanate group *trans* to the phosphine would not be expected to be directly affected by the bulk of the phosphine. Whilst the ratios of N- to S-bonded thiocyanate *trans* to the phosphine are essentially unaffected (Table 3) when the

TABLE 3Ratios of N- to S-bonded thiocyanate in $[NBun_4][Pt(CNS)_3(PMe_{(3-n)}Et_n)]$ (n = 0-3) $L = PMe_3$ PMe_2Et $PMeEt_2$ PMeEt_2

•• -	$L = PMe_3$	Pme ₂ Et	PMeEt ₂	PEt ₃
N 5 L-Pt-S:L-P S S	t-S 0.9	1.2	1.5	1.9
N N 	t—s 0.9	0.9	1.3	1.4
N S L-Pt-N: L-Pt S S	t−N 0.5	0.5	0.6	0.7
N N i I L-Pt-N: L-Pt i I N S	t−N 0.7	0.8	0.9	1.1
S S L-Pt-N : L-Pt S S	e—s 1.5	1.7	1.9	2.4
N N L-Pt-N : L-Pt S S	a-s 0.7	0.8	0.8	0.9
N N 1 1 L-Pt-N: L-P N N	t—s 0.5	0.6	0.5	0.7

cis groups are $(NCS)_2$ or (NCS)(SCN), there is a marked steric effect when they are $(SCN)_2$. We suggest that the increasing size of the phosphine causes the cis-S-bonded thiocyanate groups to interfere more with the thiocyanate trans to L, *i.e.* the steric effect of the phosphine is 'transmitted' by the sterically demanding SCN groups. As expected, N-bonding in the cis position increases with the number of ethyl groups in the phosphine. This effect is greater when the other positions are S-bonded, *i.e.* when the system is most sterically crowded.

For the neutral complexes we noted that the degree of N-bonding increased with the increasing *trans* influence

⁴ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor, and I. R. H. Marshall, *J.C.S. Dalton*, 1976, 459.

of the trans anionic groups in the order $Cl^- < [NCS]^- <$ $[SCN]^-$. The considerably enhanced amount of Nbonding when trans to a phosphine compared to other neutral ligands (Table 4) suggests a similar process for neutral ligands. The trans influence of NMe₃ (ref. 5) should be much lower than that of $AsMe_3$, e.g. $^1J(PtP)$ in trans-[PtCl₂L(PMe₃)] is 3 674 (L = Cl), 6 3 299 (NMe₃), 7 2 796 (AsMe₃), 7 and 2 379 Hz (PMe₃). 6 Thus, the similar degree of N-bonding trans to NMe₃ and AsMe₃ is not in accord with their trans influences, neither is the very low amount of N-bonding trans to SbMe₃ and TeMe₂ as in dichloromethane (with the addition of CD₂Cl₂ to provide a 'lock ' for the Fourier-transform measurements). Several days were required to achieve equilibrium between the isomers especially where isomerisation involved a group cis to the neutral ligand. The relative concentrations were estimated by integration of the Fourier-transform spectra of the phosphine complexes and by weighing the area under the ¹H peaks of the others since there was frequently interference from cation features. Because of the similarity of the environments of ³¹P nuclei in the various isomers of $[Pt(CNS)_3(PR_3)]^-$, the relaxation rates should not differ much and their effect on the observed ratios is likely to be

TABLE 4 Ratios of N- to S-bonded thiocyanate in $[Pt(CNS)_3L]^-$								
N S L-Pt-S: L-Pt S S S	-s	0.8	1.9	0.4	0.05	0.4	0.4	0.3
S S L-Pt-N : L-Pt- S S	-\$ 0.2*	1.4	2.4	0.2	ca. 0	0.1	0.05	0.005

* For NMe₃, ratio of [Pt(NCS)₃(NMe₃)]⁻: trans-[Pt(NCS)₂(SCN)(NMe₃)]⁻.

these ligands should have a significant trans influence. The ratios in Table 4 imply a tendency for light donors to promote N-bonding whilst heavy donors encourage S-bonding, *i.e.* the 'symbiosis 'referred to by Jørgensen⁸ for cobalt(III) systems. Such an effect should be nondirectional and equally affect the cis position. The change from N- to S-bonding with increasing atomic numbers of a cis Group 5 donor in both [Pt(CNS)₃L]⁻ and $trans-[Pt(CNS)_2L_2]$ may therefore be due to a symbiotic ' effect in addition to the reduction of steric interactions as the bonds between the methyl groups and the donor atom lengthen. Such a change cis to the neutral ligand is much less marked for the chalcogen ligands, which may be a consequence of the steric effects of the additional unco-ordinated lone pair present in these ligands.

We have examined $[Pt(CNS)_3(PMe_3)]^-$ in chloroform, dichloromethane, acetone, acetonitrile, and dimethyl sulphoxide to assess the effect of solvent on the equilibria between N- and S-bonded thiocyanate. The proportion of N-bonded thiocyanate both cis and trans to PMe_a increased according to the solvent in the above order, *i.e.* with increasing dielectric constant. This is in agreement with the behaviour of $[Pt(CNS)_2(PR_3)_2]$ $(R = Me \text{ or } Et)^{1}$ but contrasts with the trend observed by Burmeister et al.⁹ for some palladium systems.

EXPERIMENTAL

The n.m.r. measurements were made as for the neutral complexes [Pt(CNS)₂L₂],¹ using 0.2-0.5 mol dm⁻³ solutions ⁵ P. L. Goggin, R. J. Goodfellow, and F. J. S. Reed, J.C.S.

- Dalton, 1972, 1298. ⁶ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, J. R. Knight, F. J. S. Reed, and B. F. Taylor, *J.C.S. Dalton*, 1974,
- 523. 7 B. F. Taylor, Ph.D. Thesis, Bristol, 1973.
 - ⁸ C. K. Jørgensen, Inorg. Chem., 1964, 3, 1201.

much less than other possible errors especially those resulting from the overlap of signals.

complexes $[NBu^{n}][Pt(CNS)_{3}L]$ The $(L = AsMe_{a})$ AsMe₂Et, PMe₃, PMe₂Et, and PEt₃) were prepared by metathetic substitution of the corresponding chlorocomplexes using K[NCS] in acetone solution. After removal of the solvent and extraction with dichloromethane, the complexes of AsMe₃, AsMe₂Et, and PMe₃ were obtained as yellow crystals from acetone-diethyl ether: [NBun4][Pt(CNS)3(AsMe3)], m.p. 83-85 °C [Found (Calc.): C, 36.3 (36.1); H, 6.3 (6.2); N, 7.6 (7.7)]; [NBun₄]-[Pt(CNS)₃(AsMe₂Et)] [Found (Calc.): C, 37.0 (37.0); H, 6.0 (6.3); N, 7.4 (7.5)]; $[NBu_{4}^{n}][Pt(CNS)_{3}(PMe_{3})], m.p.$ 62-64 °C [Found (Calc.): C, 38.4 (38.4); H, 6.7 (6.6); N, 8.0 (8.1)%]. The complexes of PMe₂Et, PMeEt₂, and PEt_a were only obtained as yellow oils. The complexes $[NBu_{4}^{n}][PtCl_{3}L]$ were prepared as in ref. 10.

Metathetical replacement with K[NCS] tended to displace NMe₃, SMe₂, SeMe₂, TeMe₂, or SbMe₃. However, solutions containing [NBuⁿ₄][Pt(CNS)₃L] could be obtained for these ligands by equilibration of $[Pt(CNS)_2L_2]$ with $[NBu_4^n]_2$ -[Pt(SCN)₄]. Formation of [Pt(CNS)₃L]⁻ was essentially complete except for trimethylamine where the ¹H spectrum indicated an ca. 1:1 mixture of $[Pt(CNS)_3(NMe_3)]^-$ and $[Pt(NCS)_2(NMe_3)_2]$. The complex $[NBun_4][Pt(SCN)_4]$ was prepared by metathetic reaction between [NBun4][PtCl4] and K[NCS] as above and was obtained as orange crystals, m.p. 91-93 °C [Found (Calc.): C, 47.45 (47.4); H, 8.1 (7.95); N, 8.9 (9.2)%].

We thank Dr. J. Browning for experimental assistance, and the S.R.C. for the award of a research assistantship (to S. J. A.) and a grant to purchase the Fourier-transform spectrometer.

[7/208 Received, 7th February, 1977]

Soc. (A), 1968, 504.

⁹ J. L. Burmeister, R. L. Hassel, and R. J. Phelan Inorg. Chem., 1971, 10, 2032. ¹⁰ P. L. Goggin, R. J. Goodfellow, and D. A. Duddell, J. Chem.